Aorta-on-a-chip: a novel tool to gain molecular insights into aneurysm disease

Experimental Vascular Surgery & Medicine Unit

TUM
Disclosure

Speaker name:

Valentina Paloschi

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

✓ I do not have any potential conflict of interest
Outline

- Organs and Tissues-On-Chip introduction
- Applications
- Experimental set-up
Decline in pharmaceutical R&D efficacy

Reason for failure 2013-2015

Percentage failure by therapeutic area

Overcoming the translational problem with better in vitro models

Miniature tissues and organs grown *in vitro* (Micro Physiological Systems)

Reverse engineer an organ?

OOC Technology
- Tissue engineering
- Microfluidics
- Human cell sourcing

1. Multicellular architectures
2. Tissue-Tissue interfaces
3. Vascular perfusion
4. Organ-relevant physicochemical microenvironment

Modelling of human physiology and disease
Aorta-on-a-chip: a tool in vascular biology research

- More relevant model of human pathophysiology
- Architecture of the organ
- Organ-relevant physicochemical microenvironment
- EC-SMC crosstalk in vascular diseases
I. Application

- Allows to study different flow patterns and their effects in EC-SMC compartments
 - Discovery of flow-dependent effectors

II. Application _ personalized medicine (Munich Vascular Biobank)

- Biobank of adult primary SMC and EC isolated from patients / donor
- Biobank of iPSCs from patients / donor
 - Aorta-on-a-chip as a disease model

III. Application _ RNA therapeutics testing

Drug Eluting Balloon-delivered anti-29b to halt chronic aneurysm progression in LDLR-/- Yucatan mini-pigs

Li YD et al. Circulation 2018
Aorta-on-a-chip setup & flow

Primary aortic smooth muscle cells

Primary aortic endothelial cells

Chip structure

4-slot OOC

OOC connected to microfluidic pump

Re-circulation: unidirectional flow

Qualitative read-outs: IF

Quantitative read-outs: RNA, protein, secretome analysis

Chip isolation at end point
Aorta-on-a-chip read-outs

Co-culture membrane IF analysis

RNA isolation and expression profile
Increasing High-Throughput

Polydimethylsiloxane

Silicon-based organic polymer

Transparent

Soft, flexible

Very high gas permeability

Absorbs small hydrophobic molecules

Width 800 micron, Height 100 micron
PDMS – syringe pump

Medium Perfusion

Staining protocol

Pecam

Phalloidin
Acknowledgments

Experimental Vascular Surgery Unit
Lars Maegdefessel
Francesca Fasolo
Hanna Winter
Shengliang Liu
Shen Lao
Zhiyuan Wu
Jaro Pelisek
Nadiya Glukha
Renate Hegenloh
Michael Salvermoser
Jessica Pauli
Sabine Bauer
Susanne Metschl

Vascular Surgery
Hans-Henning Eckstein
Albert Busch

Molecular and cellular biophysics
Andreas Bausch
Pablo Fernandez
Benedict Buchmann

Fraunhofer
Peter Loskill Lab

Micronit Microtechnologies
Sandro Meucci

Fluigent
Felix Rogowitz

DFG
Deutsche Forschungsgemeinschaft

DZHK
Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.