Inner Branches as an Additional Option besides Fenestrations & Branches in TAAA Branched Grafting

Athanasios Katsargyris, MD, Eric Verhoeven, MD, PhD
Department of Vascular and Endovascular Surgery
Paracelsus Medical University, Klinikum Nuremberg, Germany
Disclosures

• A. Katsargyris
 – None

• ELG Vehoeven
 – William Cook Europe/Cook Inc.
 • Consultant & Research grants
 – Atrium Maquet Getinge
 • Consultant
 – Bentley
 • Consultant
Fenestrated and Branched Stent-grafts
Fenestrations or Branches?
Fenestration

- 90 degree take-off
- Catheterisation from below
- Graft in contact/close to aortic wall
Branch

- Sharp take-off
- Catheterisation from above
- Enough space between graft and aortic wall
What to do with „non-suitable“ vessels?

• Steep take-off in conjunction with smaller diameter of the aorta
INNER LINING OF A BRANCH

Le owned by kode

30 mm sealing toe as high as possible

10 / 10

March 01, 2004

Washington
Evolution towards Latest Cook Arch Device
Other Advantages of Inner Branches

• No Risk of squashing the Branch
 – Small diameter
 – Angulation
• Option to keep the main graft wider
• Cover less Aorta proximally

• Easier catheterization of Vessel?
 – Support of the „basket“ guides the catheter
Specials...
Post-Dissection TAAA
Repair of previous FEVAR
Partial opening of graft...
Early Experience with the Use of Inner Branches in Endovascular Repair of Complex Abdominal and Thoraco-abdominal Aortic Aneurysms

Athanasios Katsargyris a, Pablo Marques de Marino a, Hozan Mufty a, Luis Mendes Pedro a, Ruy Fernandes b, Eric L.G. Verhoeven a,b,c

aDepartment of Vascular and Endovascular Surgery, Paracelsus Medical University, Nuremberg, Germany
bDepartment of Vascular Surgery, Hospital Santa Maria, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
Patients (N=43)
Main Reason for Inner Branches (N=63)

- Target Vessel Anatomy \(N=38 \)
- To keep main graft wide \(N=34 \)
- To start lower in Aorta \(N=7 \)
- Specials \(N=2 \)
- PS Combination of Reasons! \(N=18 \)
Stent-graft Design

- Inner Branches + Fenestrations
 - N=39

- Inner Branches only
 - N=4
Indwelling Wire
52/63 Inner Branches

<table>
<thead>
<tr>
<th>N of Inner Branches</th>
<th>N of Indwelling wires</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1 (inner branch and fenestrations)</td>
<td>27</td>
</tr>
<tr>
<td>2 (inner branches and fenestrations)</td>
<td>3</td>
</tr>
<tr>
<td>3 (inner branches only)</td>
<td>2</td>
</tr>
<tr>
<td>4 (inner branches only)</td>
<td></td>
</tr>
</tbody>
</table>
Technical Details
Catheterization of Inner Branch/Target Vessel

• Technical Success: 100%

• Inner Branches
 – With indwelling wire: N= 53: all <1‘
 – Without indwelling wire: N=11: all >3’

• Target Vessels
 – With fenestrations: N=49: all <1‘
 – Only inner branches: N=14: (<1’: N=3; 1’-3’: N=4; >3’:N=7)
Outcome

• 30-d Mortality: N=2 (4.7%)
 – Day 5, MOF
 • prolonged procedure, repair of previous EVAR
 – Day 29, Complications of status epilepticus

• 30-d Morbidity: N=9 (20.9%)
 – Subcapsular kidney hematoma: N=2
 – Temporary renal insufficiency: N=2
 – Cardiac complications: N=2
 – SCI (paraparesis): N=2
 – Pneumonia: N=1
Follow-up
Mean: 11.7 months (1-26 months)

• **Target Vessel Occlusion**: N=5 (7.9%, in 4 patients)
 – 2 Unilateral renal inner branch
 • 1 incidental on CTA
 • 1 acute renal failure-dialysis (severe hypertensive nephrosclerosis on both kidneys)
 – 1 Bilateral renal inner branch
 • Recanalisation + thrombolysis: temporary dialysis
 – 1 Solitary renal inner branch
 • Recanalisation + Thrombolysis: dialysis with ↑ diuresis
Occlusions (N=5)

Details

<table>
<thead>
<tr>
<th></th>
<th>CA</th>
<th>SMA</th>
<th>RRA</th>
<th>LRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrium V12</td>
<td>8</td>
<td>5</td>
<td>3 (1 occlusion)</td>
<td>8 (1 occlusion)</td>
</tr>
<tr>
<td>Atrium V12 + relining</td>
<td>11</td>
<td></td>
<td>4 (2 occlusions)</td>
<td>4 (1 occlusion)</td>
</tr>
<tr>
<td>BeGraft+</td>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>BeGraft+ + relining</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fluency</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covera</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Covera + relining</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>22</td>
<td>7</td>
<td>12</td>
<td>17</td>
</tr>
</tbody>
</table>
Occlusions (N=5) Details

<table>
<thead>
<tr>
<th>Stent Diameter</th>
<th>N</th>
<th>Occlusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-6mm</td>
<td>26</td>
<td>4 (15.4%)</td>
</tr>
<tr>
<td>7-7+ mm</td>
<td>36</td>
<td>1 (2.8%)</td>
</tr>
</tbody>
</table>
Atrium V12 + Relining (Smart)
Extra relining

TAB 250

+ thrombolysis
Atrium V12 + Relining (Smart)

LRA Occlusion:
Suboptimal Orientation of the Graft? (4 inner branches)
Limitations and Potential

• Big Diamonds
 – Less sealing?
 – Potential design for off-the-shelf device (inner branches for both renals + fenestration for SMA)

• Limitations in positioning
 – Have to fit inside existing Z-Stent
Conclusions

• Interesting third option
 – Combination of Inner Branch(es) with fenestrations
 – Avoid inner branches only!

• Should become available....