Current status of in-stent restenosis treatment in the SFA

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico, Lugano
University of Bern
Switzerland
The problem of ISR

Cellular reaction
Extra-cellular matrix (ECM) > 50% of total volume (Thrombus)

Inoue S et al, JVS 2002;35:672-678
The problem of ISR

• Mechanism of luminal gain (PTA coronary ISR)
 – Tissue compression
 – Extrusion of tissue out of stent
 – Additional stent expansion (upto 56 % of total luminal gain)

• NB additional stent expansion not possible in SE stents

Mehran R et al, Am J Cardiol 1996;78:618-622
The problem of ISR

• Volumetric IVUS analysis (coronary)
 – PTA provides good acute luminal gain (intra-stent volume decrease 50%)
 – After short delay (ca. ½ hour) increase in intra-stent volume (32%)

• Underscores need for tissue ablation

Albertal M et al, Am J Cardiol 2005;95:751-754
Treatment modalities for ISR

- Cutting-balloon angioplasty
- Cryoplasty
- Brachytherapy
- DES
- Relining
- Atherectomy
- DCB angioplasty
- Combination therapy of atherectomy and DCB angioplasty
Treatment modalities for ISR

- Cutting-balloon angioplasty
- Cryoplasty
 - Brachytherapy
 - DES
 - Relining
 - Atherectomy
 - DCB angioplasty
- Combination therapy of atherectomy and DCB angioplasty
ISR and brachytherapy

Re-188
- N = 90
- ISR length = 24.6 cm
- PP 6 months 95.2%
- PP 12 months 79.8%

Iridium 192
- N = 42
- ISR length = 23.5 cm
- PP 12 months 75.2%
- PP 24 months 73.7%

Werner M et al, JET 2012;19:467-475
Ho KJ et al, JVS 2017;65:734-743
ISR and DES

ZILVER Global

N= 119
ISR length = 13.3 cm

PP 1 yr 78.8%
fTLR 2 yr 60.8%

Zephyr

N= 119 vs. 133 (stenosis vs. occlusion)

Benefit of DES doubtful in absence of total occlusion

Tomoi

N= 110 (21 DES)
ISR length = 22.8

fTLR 2 yr 27.1 vs 85.7%

Murata N et al, JET 2016;23:642-647
Tomoi Y et al, JET 2016;23:461-467
ISR and covered stents

RELINE

RCT PTA vs. CS
N= 44 vs. 39
ISR length = 19 vs. 17.3 cm

PP at 1 year PTA 28% CS 74.8%
fTLR at 12 months PTA 42.2% CS 79.9%

Bosiers M et al, JET 2015;22:1-10
ISR and DCB-registries

DCB in SFA-ISR
- N = 39
- ISR length = 8.3 cm
- 70.3% Primary Patency at 2y

DEBATE ISR
- N = 44
- 100% DM, 75% CLI
- ISR length = 13.2 cm

Virga V et al. JACC Cardiovasc Int 2014;7:411-415
Liistro F et al. JET 2014;21:1-8
ISR and DCB-registries

PLAISIR

N = 55
ISR length = 8.6 cm

- fTLR 18 months 90.2%

INPACT GLOBAL

N = 149
ISR length = 17.2 cm

- PP 12 months 88.7%
- fTLR12 months 92.7%

Bague N et al EJVES 2017;53:106-113
Brodmann M et al JACC Cardiovasc Interventions 2017;;10:2113-2123
ISR and DCB-RCT’s

FAIR
RCT DCB vs. PTA
N= 119
ISR length = 8.2 cm

- **62.5%**
 (25/40)

- **29.5%**
 (13/44)

\[p = 0.004 \]

ISAR-PEBIS
RCT DCB vs. PTA
N=70
ISR length = 13.2/14.6 cm

Krankenberg H et al, Circulation 2015;132:2230-2236
Ott I et al, J Am Heart Association 2017;6:e006321
ISR and DCB-class effect?

- PACUBA (Freeway)
- Lesion length
 - 17.3±11.3 cm DCB
 - 18.4 ± 8.8 cm PTA

ISR and DCB-meta-analysis

ISR and DCB

- Lesion length 132±86 mm (DCB)
- At 3 year follow-up complete catch-up
- No difference between DCB and POBA

Liistro F et al. JET 2014;21:1-8
Grotti S et al. JET 2015;23:52-57
ISR and ELA

PATENT
Registry
N= 90
ISR length = 12.3 cm
f TLR-Class I 54.5%
-Class II 27.6%
-Class III 24%

EXCITE
RCT ELA+PTA vs. PTA
N=250 (169/81)
ISR length = 19.6/19.3 cm

Schmidt A et al, JET 2014;21:52-60
Dippel E et al JACC Cardiovasc Int 2015;8:92-101
ISR and ELA/DCB

RCT
N= 48
ISR length = 22.4/25.9 cm
All Tosaka class 3

12-month Primary Patency: 66.7% vs. 37.5%
(p= 0.01)

Registry
N=25 (FU 5 yrs)
ISR length = 10.5 cm
Tosaka I n=6
Tosaka II n=0
Tosaka III n=20

<table>
<thead>
<tr>
<th>Primary Patency</th>
<th>Freedom from TLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.0%</td>
<td>89.7%</td>
</tr>
<tr>
<td>78.2%</td>
<td>85.9%</td>
</tr>
<tr>
<td>71.7%</td>
<td>76.4%</td>
</tr>
<tr>
<td>71.7%</td>
<td>76.4%</td>
</tr>
<tr>
<td>62.7%</td>
<td>70%</td>
</tr>
</tbody>
</table>

Registry ELA/DCB vs ELA/PTA
N=112
Bailout stenting
laser/DCB 31.7% vs laser/PTA 58%, p=0.006

Table 3. Twelve-Month Kaplan-Meier Estimates of Outcomes.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Laser + DCB</th>
<th>Laser + BA</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent occlusion</td>
<td>13.3</td>
<td>43.1</td>
<td>0.003</td>
</tr>
<tr>
<td>TLR</td>
<td>27.5</td>
<td>49.5</td>
<td>0.043</td>
</tr>
<tr>
<td>Bypass</td>
<td>8.3</td>
<td>5.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Limb loss</td>
<td>5.2</td>
<td>2.6</td>
<td>0.5</td>
</tr>
<tr>
<td>MALE</td>
<td>12.4</td>
<td>16.6</td>
<td>0.6</td>
</tr>
<tr>
<td>MACCE</td>
<td>8.8</td>
<td>8.8</td>
<td>>0.9</td>
</tr>
<tr>
<td>Mortality</td>
<td>6.8</td>
<td>8.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Abbreviations: BA, balloon angioplasty; DCB, drug-coated balloons; MACCE, major adverse cardiac or cerebrovascular events; MALE, major adverse limb events; TLR, target lesion revascularization.

Gandini R et al, JET 2013;20:805-813
Kokkinidis DG et al. JET 2018;25:81-88
Perspective (cf. DCB alone @ 3 years)

\[\Delta = 16.4\% \]

Freedom from TLR

Grotti S et al. JET 2015;23:52-57
Conclusions

• The treatment of in-stent restenosis with conventional balloon angioplasty yields poor short-term results that can be improved by using DCB technology.

• DCB treatment shows a catch-up phenomenon after 3 years.

• Treatment of long femoral in-stent restenosis with a combination of laser debulking and DCB shows excellent short-term results and good long-term results.
Current status of in-stent restenosis treatment in the SFA

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico, Lugano
University of Bern
Switzerland