Expansion and Atrophy –

aortic wall development after EVAR with an endoleak type II

A Busch, A-L Menges

Department of Vascular and Endovascular Surgery,
Klinikum rechts der Isar, Munich
I do not have any potential conflict of interest
Introduction

- AAA prevalence age dependent 2-11%
- EVAR in 80% of elective and 60% of acute repairs
- Specific complications:
 - Type I and III endoleaks (EL)
 - Type II EL in 20-32% of EVARs
 - Ca. 30% spontaneous resolution
 - Ca. 30% persist w/o sac growth
 - Ca. 30% persist w/o sac growth
 - Immediate repair
 - Watch and wait
 - Repair >5mm growth
 - Low rupture rate reported
 - Late type I EL rate unknown

Central research question

What happens in the secondary expanding aneurysm sac wall due to endoleak type II compared to normal aorta and AAA?
Study Design

- 11 control aortae
- 42 AAA samples
- IHC
- Western Blot
- RT-PCR
- Angiogenesis
- Inflammation
- Wall composition
- Cell proliferation
- Apoptosis

10 patients → OR → structural analysis

Graph showing aortic diameter over time after EVAR (month)
Results

- control aorta
- AAA
- sec expanding AAA
Results

control aorta

AAA

sec expanding AAA
Results

control aorta

AAA

sec expanding AAA

expression fold change vs control aorta

IL6 IL10 IFNy *
Summary

- control aorta
- AAA
- sec expanding AAA

fibrosis
altered hemodynamics
intraluminal thrombus
proteolytic imbalance
angiogenesis
humoral immune answer

reduced fibers and cellularity
altered hemodynamics
intraluminal thrombus
proteolysis
no angiogenesis
no inflammatory cells
Conclusion

central research question

What happens in the secondary expanding aneurysm sac wall due to endoleak type II compared to normal aorta and AAA?

- thin and fibrotic wall, little cellularity and enzymatic activity
- widely inert aneurysm sac
- emphasizes the role of pressure and stress on the aneurysm wall
- rupture might be less frequent than secondary/late type I/III endoleaks

EVAR follow-up should focus on aneurysm enlargement, changes in annual growth, luminal thrombus, stent migration and especially the proximal and distal sealing zones
Acknowledgement

Klinik und Poliklinik für Vaskuläre und Endo-vaskuläre Chirurgie, MRI, München
HH Eckstein L Maegdefessel
J Pelisek R Hegenloh
A Zimmermann P Kath
AL Menges G Biro

Molecular Vascular Medicine Group, CMM, Karolinska Institute, Stockholm, Sweden
L Maegdefessel Y Li
E Chernoguobova H Jin
P Erikson P Jansson
V Paloschi

Klinik für Allgemein-, Viszeral, Gefäß- und Kinderchirurgie, UKW Würzburg
CT Germer C Tiurbe
U Lorenz A Holm
R Kellersmann C Schmidt
C Bühler C Otto
M Koospal B Mühling
M Schneider