Multi-modality Molecular and Cellular Imaging to Predict

Abdominal Aortic Disease Progression: Towards Personalised

Assessment of Disease

Rachael Forsythe
University of Edinburgh & Royal Infirmary of Edinburgh
UK
Disclosure

Speaker name:

Rachael Forsythe

☑️ I do not have any potential conflict of interest
The Hubble Space Telescope
Molecular & Cellular Imaging:
The Hubble Space Telescope of Cardiovascular Research
Natural History of AAA Disease

INITIATION EXPANSION RUPTURE (REPAIR)
Scope of the Problem

“Staccato” growth

Rupture at small diameters

Complications & reintervention

Kurvers et al, JACC 2004

Evolving management

Cost & cost-effectiveness

Abdominal aortic aneurysm: diagnosis and management

NICE guideline
Draft for consultation, May 2018
Should my patient undergo aneurysm repair?

If so, when?

And by which method?

Is there any treatment that I can give to reduce their risk?
“Humans as the model organism”

TARGET

Biological Target-specific Imaging with adequate spatial resolution for imaging

PROBE

Safe & available

MODALITY

AGENT
Our Research Studies

MACROPHAGE-MEDIATED INFLAMMATION → USPIO MRI

MICRO-CALCIFICATION → \(^{18}\text{F-NaF}\) PET-CT
Ultrasmall superparamagnetic particles of iron oxide (USPIO)

- Engulfed by macrophages
- MRI signal change correlates with macrophage density
- USPIO demonstrated in rupture prone rather than stable carotid plaque

Morishige et al. (2010)
Tang et al. (2009)
USPIO Reduces MRI Signal Decay

Pre-USPIO
Low USPIO uptake
High USPIO uptake

Reductions in T2* value identify USPIO accumulation
USPIO ‘Colour Maps’

USPIO negative
Periluminal USPIO uptake only, which is not thought to represent true inflammation

USPIO positive
Area of mural USPIO enhancement of >10 contiguous voxels at the aneurysm wall, representing inflammation
MRI in AAA to Predict Rupture or Surgery
The MA³RS Study

- Patients identified from surveillance and screening at 3 study sites
- 350 patients with AAA >40mm on US
- Baseline Assessment (2 days)
 - DAY 1
 - MRI Pre
 - US
 - DAY 2
 - MRI Post 24 h
 - CT Aortogram
- 6 monthly US assessments
- Final 2 year assessments
 - US
 - CT Aortogram

Edinburgh Imaging
www.ed.ac.uk/edinburgh-imaging
MA³RS Study Results

56% USPIO NEGATIVE

43% USPIO POSITIVE

*1% indeterminate

Current Smoking (p=0.0003)

AAA diameter (p=0.0002)

CIA Aneurysm (p=0.0289)

342 Participants
End Points

During follow up: 1005±280 days

- Rupture: 5% (17)
- Repair: 37% (126)
- Death: 14% (48)
Primary Endpoint: Aneurysm Rupture or Repair

<table>
<thead>
<tr>
<th>Primary endpoint: Rupture & Repair</th>
<th>36% (68)</th>
<th>47% (69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USPIO -ve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USPIO +ve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*95% CI: 1.1-22.2, p=0.0308
Secondary Endpoint: Aneurysm Growth

USPIO -ve

USPIO +ve

<table>
<thead>
<tr>
<th>Aneurysm growth rate (mm/year)</th>
<th>2.5±2.4</th>
<th>3.1±2.5</th>
</tr>
</thead>
</table>

95% CI: 0.2-1.2 mm/yr, p=0.0424
The Predictive Value of USPIO MRI in AAA

- USPIO enhancement predicts AAA rupture / repair and AAA growth

- BUT it is not an independent predictor
 - C-statistic 0.7924-0.7926
 - Unconditional net reclassification -13.5%; 95% CI -36.4 to 9.3

- It highlights a central role for cellular inflammation

- Interesting size observation:
 - If <50mm - double the rate of repair / rupture if USPIO+ve, no effect on mortality
 - If >50mm - double the rate of mortality if USPIO+ve, no effect on rupture / repair
18F-NaF PET-CT to Investigate Microcalcification

CALCIUM DYSTROPHY

- Apoptosis
- Necrotic inflammation
- Micronodules of calcification
- Dense calcification

PET-CT

CT
18F-NaF PET-CT in Vascular Calcification

CORONARY

Joshi et al, Lancet 2014

CAROTID

Vesey et al, Circ Cardiovasc Imaging 2017

AORTIC VALVE

Dweck et al, Circ Cardiovasc Imaging 2014
The SoFIA3 Study

Sodium Fluoride Imaging (18F-NaF PET-CT) in Abdominal Aortic Aneurysms

SoFIA³ Study: Methods

Control Group

Normal aorta ≤ 30mm

Observational Cohort

Asymptomatic AAA ≥ 40mm

CT Aortogram

¹⁸F-NaF PET-CT

Calcium scoring CT

No further follow up

USS every 6 months
‘Most-Diseased Segment’ Analysis

Tawakol et al, JACC 2013
Results: Case-Control & ex-vivo Studies
Results: Aneurysm Growth
Tertiles of 18F-NaF Uptake in the MDS

72 Participants

18 months of follow up
Results: AAA Rupture or Repair

Tertiles of 18F-NaF Uptake in the MDS

Repair or rupture

Repair alone

Multivariable Analysis: 18F-NaF Uptake

<table>
<thead>
<tr>
<th></th>
<th>Increase in Expansion (mm/year; 95% CI)</th>
<th>P-value</th>
<th>Hazards Ratio (95% CI) for AAA events</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.365 (0.34, 1.90)</td>
<td>0.006</td>
<td>2.16 (1.03, 4.51)</td>
<td>0.041</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.375 (0.39, 1.91)</td>
<td>0.004</td>
<td>2.26 (1.97, 4.76)</td>
<td>0.033</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.259 (0.029, 1.56)</td>
<td>0.042</td>
<td>2.49 (1.07, 5.78)</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Model 1: unadjusted
Model 2: adjusted for age, sex
Model 3: adjusted for age, sex, body mass index, systolic blood pressure, smoking, aneurysm diameter
The Predictive Value of 18F-NaF PET-CT in AAA

- This is the largest clinical PET-CT study in AAA

- Increased 18F-NaF uptake occurs in aneurysmal aortae vs controls

- Uptake is associated with histological markers of cell death / early calcification

- 18F-NaF uptake on PET-CT is an independent predictor of AAA growth, rupture or repair

This is the first imaging biomarker to independently predict disease progression in a clinical study
Other Targets and PET Tracers

Angiogenesis
- 18F-NOTA-RGDfK
- 18F-NS14490

Fibrosis
- 18F-NOTA-RGDfK

Inflammation
- 11C-PK11195
- 18F-NS14490
- 68Ga DOTATATE (FDA)

Thrombus
- ENC2015
- GP1
Current and Future 18F-NaF Studies in Edinburgh

- **SoFIA³-PREDICT**
 - Multi-centre efficacy study: can 18F-NaF PET-CT be used for personalised assessment of AAA disease?
 - EVERLAST – predicting EVAR durability

- **FAAAST**
 - 18F-NaF PET-CT in acute aortic syndromes: can we predict clinical progression of TBAD, IMH and PAU?

- **Blue SAFFIRE**
 - 18F-NaF PET-CT in carotid artery disease: does 18F-NaF predict future stroke in patients with carotid atherosclerosis?
 - + coronary, aortic valve, drug trial endpoints etc etc...
 - + other tracers
Translational Value of Imaging Biomarkers

Personalised evaluation of future disease potential

1. Management according to biological risk in addition to clinical features

2. Decision-making in medically high risk patients

3. Person-specific intervention thresholds

Serial non-invasive assessments of the vasculature

Evaluation of new drug therapies – surrogate endpoint
Moving Towards Personalised Medicine

DEEP PHENOTYPING → PRECISION HEALTHCARE
Professor David Newby
And
University of Edinburgh:
Dr MR Dweck, Dr JMJ Robson, Dr AT Vesey, Dr OMB McBride, Dr J Kaczynski, Dr ASV Shah, Dr A Tavares, Dr S Semple, Dr C Gray, Prof EJR van Beek, Dr A Fletcher, Dr C Lucatelli, Dr A Marin, Mr P Burns, Prof OJ Garden, Dr T MacGillivray, Dr C Wang, Miss A Cooper, Dr YG Koutrakli, Dr W Ho, Miss L Fraser, Miss H Cuthbert, Prof P Hoskins, Dr B Doyle, Dr N Conlisk, Dr L Milne, Dr F Strachan, Dr F Wee, Dr K Oatey, Dr C Graham, Prof G Murray, Mr G Milne, Dr M Bucukoglu, Dr K Goodman
Royal Infirmary of Edinburgh:
Prof W Wallace, Dr RTA Chalmers, Mr N Mitchard, Dr G Weir, Dr G McKillop
Western Infirmary, Glasgow:
Dr W Stuart, Prof C Berry, Dr G Roditi, Miss L Murdoch
Forth Valley Royal Hospital:
Dr R Holdsworth, Dr E Scott

Acknowledgements