Patient-specific numerical simulation of endovascular aneurysm repair

Dr Lucie Derycke, Dr David Perrin, Prof Frédéric Cochenec, Prof Jean-Noël Albertini,
Prof Stéphane Avril
avril@emse.fr
Disclosures

D. Perrin, J.-N. Albertini and S. Avril are cofounders of the company Predisurge SAS.
EVAR simulation history in our group

Research: from basic models to clinically relevant simulations

Stent-graft modelling

Generic simulation of stent-graft deployment

Patient-specific simulations

Simulation validation and assessment

Red: simulation
Grey: postoperative scan

2008 2012 2015

Prof Stéphane Avril
avril@emse.fr
FEA and stent-graft deployment simulation in aorta

- **Infra-renal aorta**
 - Simple
 - Low clinical interest

- **Coeliac artery**
 - Complex
 - Collateral arteries

- **Ascending aorta**
 - Straight zone
 - Limited interest

- **Aortic arch**
 - Complex
 - Tortuosity
 - Collateral arteries

Branched
- Complex
- Collateral arteries

Fenestrated
- Simple
- Limited interest

Bifurcated
- Complex
- Tortuosity
- Collateral arteries

Tubular
- Straight zone
- Limited interest

SG
- Virtual anatomy
- Patient-specific

Prof Stéphane Avril
avril@emse.fr
FEA and stent-graft deployment simulation in aorta

Aortic sections
- **Infra-renal aorta**
 - Simple
 - Low clinical interest
- **Coeliac artery**
 - Complex
 - Collateral arteries
- **Ascending aorta**
 - Straight zone
 - Limited interest
- **Aortic arch**
 - Complex
 - Tortuosity
 - Collateral arteries

Aortic anatomy
- **Tubular**
 - Simple
 - Low clinical interest
- **Bifurcated**
 - Complex
 - Collateral arteries
- **Fenestrated**
- **Branched**
 - Simple
 - Low clinical interest

Complexity
- Virtual anatomy
- Patient-specific

Projects
- Perrin et al. 2018
 - Un-published
- De Bock et al. 2012
- Perrin et al. 2015b
- Perrin et al. 2016
- Hemmler et al. 2018
- Arokiaraj et al. 2016
- Auricchio et al. 2013

Contact
Prof Stéphane Avril
avril@emse.fr
General information:

Pathologies of the aortic arch (aneurysm, dissection…)
Rare (5-10 cases for 100000/yr), high risk of mortality

Various treatment options
Open surgery = complex
Significant morbidity and mortality rates
30 days-mortality: until 15%

A significant fraction of patient population = high-risk patients deemed unfit for open surgery
Various treatment options: arch branched devices

Double Branch endograft
Bolton
Relay®

Custom-made device

Prof Stéphane Avril
avril@emse.fr
Main Objective

AIM:

To develop a patient specific FE model of double branch Bolton® device deployment in aortic arch aneurysm
MATERIAL & METHOD
Geometry & Material

Simulation strategy

Validation

<table>
<thead>
<tr>
<th></th>
<th>GRAFT</th>
<th>STENTS</th>
<th>AORTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>FreeCAD®</td>
<td>Matlab®</td>
<td>VMTK®</td>
</tr>
<tr>
<td>Mesh</td>
<td>Quad, 0.5mm</td>
<td>Beam, 0.3 mm</td>
<td>Triangular shell, 1.5 mm</td>
</tr>
<tr>
<td>Material</td>
<td>PET Orthotropic elastic</td>
<td>Nitinol Isotropic elastic</td>
<td>Constant thickness, Isotropic elastic</td>
</tr>
</tbody>
</table>

PERSONALIZED

Gasser et al 2006
Perrin et al 2015b
Perrin et al 2016
De Bock et al 2012
Demanget et al 2012 & 2013

Prof Stéphane Avril
avril@emse.fr
Patients: N=3

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sexe</th>
<th>ASA</th>
<th>Aneurysm diameter, mm</th>
<th>Ishimaru zone</th>
<th>Distal aortic neck</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
<td>M</td>
<td>3</td>
<td>62</td>
<td>0</td>
<td>Aortic bifurcation</td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>M</td>
<td>3</td>
<td>58</td>
<td>0</td>
<td>Descending thoracic aorta</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>M</td>
<td>4</td>
<td>59</td>
<td>1</td>
<td>Iliac arteries</td>
</tr>
</tbody>
</table>

Preop & Postop CT-scan

Graftplans and fabrics data provided by the manufacturer

Prof Stéphane Avril
avril@emse.fr
Stentgraft assembly and pre-stressed:
- Oversizing: tie constraint
- Radial compression: bridging stents placement & stent-grafts crimping
Pre-stressed Deployment Morphing Mechanical equilibrium

Ao: idealized tubular shell

Geometry & Material Simulation strategy Validation

Prof Stéphane Avril avril@emse.fr
SGs placed in the intended position:
- Global rotation
- Proximal landing zone
Bridging stents bending (1)
Stent-grafts released (2)
The tubular shell of the aorta is deformed to come back to its preoperative geometry

SGs are maintained in the shell => submitted to deformations
Mechanical equilibrium

SG: stressed
Ao: stressed

Boundary conditions:
- Aortic extremities fixed
- Friction coefficient SG/Aorta (0.4 + proximal: rough)
Sensitivity analysis (1 case)

Quantitative analysis (3 cases)
Stent segmentation on post-operative CT and comparison with Matlab®
x 3 error values: e_D, e_L, e_T

Qualitative analysis (3 cases)
Superimposition
Defect of apposition
Kink
...

Diameter_Simu Diameter_Postop

$e_D = \frac{\text{Diameter}_\text{Simu}}{\text{Diameter}_\text{Postop}}$

Sensitivity analysis (1 case)

Prof Stéphane Avril
avril@emse.fr
RESULTS
Results

Case 1

Case 2

Case 3

Prof Stéphane Avril
avril@emse.fr
Results

Bolton double branch simulation
06/09/2018
Lucie Derycke, with PrediSurge
Results

Belton double branch simulation
03/09/2018
Lucie Derycke, with PrediSurge
Friction coefficient

Results: sensitivity analysis

Friction coefficient

Fdist = 0.4

Fprox = 0.4/0.1

A

B

Fprox = rough

Fdist = 0.4

Prof Stéphane Avril
avril@emse.fr
Results: sensitivity analysis

Figure 8: Error values of diameter eD (A), longitudinal eL (B) and transverse errors eT (C) for each stents depending of Young modulus. Stents are numbered from 1 (proximal) to 15 (distal); X axis: stent number, Y axis: error values in mm

Prof Stéphane Avril
avril@emse.fr
Results

Case 1

Case 2

Case 3

Prof Stéphane Avril
avril@emse.fr
Results

Bolton double-branch stentgraft simulation
Lucie Derycke, 23/08/2018
With PrediSurge
Results

Bolton double-branch stentgraft simulation
Lucie Derycke, 23/08/2018
With PrediSurge
Results
Results: qualitative analysis

TORSION case n°2

Prof Stéphane Avril
avril@emse.fr
Results: qualitative analysis

TORSION case n°2

Rotation 0°

Rotation 135°
Results: qualitative analysis

TORSION case n°2

Rotation 135°
Results: qualitative analysis

COLLAPSE Case n°3

A

B

C

D

E

F

Prof Stéphane Avril
avril@emse.fr
Results: qualitative analysis

COLLAPSE Case n°3

Bolton double-branch stentgraft simulation
Lucie Delvycke, 23/05/2018
With PrediSurge
Results: BRIDGING STENTS CONFIGURATION

-60° -30° -0° +30° +60° +75° -75°

Prof Stéphane Avril
avril@emse.fr
Results

Rotation -75°
DISCUSSION
Endovascular Aortic Arch Challenges

Custom-made device
Measures on preop CT

Device alignment
Secure device

Device durability
New set of physiological loads

Tools are needed for planning to help the practitioner and to improve the device properties

Prof Stéphane Avril
avril@emse.fr
Discussion

Overall satisfying agreement between simulations and post-operative CT scans:

Mean error values: \(e_D = 1.95\% \); \(e_L = 2.9 \text{ mm} \); \(e_T = 5.45 \text{ mm} \)

Promising potential and ability of numerical simulation:

- to predict complex stent-graft deployment in challenging anatomy like aortic arch aneurysms

- to detect potential complication, such as collapse

- to understand stent-graft behavior and conformability, such as in torsion configuration

Tool compatible with clinical decision-making model

Prof Stéphane Avril
avril@emse.fr

Derycke et al, Annals of Biomedical Eng, 2018, in revision
Software solutions assisted by numerical simulation

Optimize design, preoperative planning and implantation of medical devices

- Company founded in May 2017
- Focus on endovascular repair (EVAR) of aortic aneurysms
- Graphical user interface
- Over 200 cases
- On-going clinical trials for CE and FDA approval
Funding:
ERC-2014-CoG BIOLOCHANICS

DANKE SCHÖN!

Dr Lucie DERYCKE, Dr David PERRIN,
Prof Jean-Noël Albertini, Prof Stéphane AVRIL

avril@emse.fr