Select Type I and III Endoleaks at the Completion of Fenestrated EVAR are Safe to Observe

Marc L. Schermerhorn, MD

George H.A. Clowes Jr. Professor of Surgery
Harvard Medical School
Chief, Division of Vascular and Endovascular Surgery
Beth Israel Deaconess Medical Center
Disclosures

Abbott, Cook, Endologix, Medtronic, Silk Road
Background

• Endoleak after EVAR
 – Type I and III endoleaks
 • Associated with conversion to open repair, rupture, and mortality
 – Technical Failure
 • SVS Reporting Standards classify type I and III endoleaks on completion angiogram as a technical failure
 – Common
 • 3 – 16% of EVAR
 • The majority resolve spontaneously
Endoleaks after FEVAR

- Type Ia
- Type Ic
- Type IIIa
- Type IIIb
Aims

• Characterize the natural history of completion type I and III endoleaks after FEVAR

• Identify patient characteristics associated with completion endoleak
 – Demographics / comorbidities
 – Anatomic
 – Graft design
Methods

• Study Design:
 – Retrospective cohort study
 – Single-center experience
 – All patients undergoing FEVAR with the Zenith Fenestrated AAA Endovascular Graft (ZFEN; Cook Medical, Bloomington, IN)
 – Exposure variable: presence of type I or III completion endoleak
ZFEN Device

Fenestrated Component
- Scallop
- Sealing Stent
- Small Fenestration
- Tapered Stent
- Overlap Stents

Bifurcated Component
- Overlap Stents
- Contralateral Limb
- Ipsilateral Limb

Beth Israel Deaconess Medical Center
Harvard Medical School
Methods

• Endoleak Management
 – Small, slow type I and III endoleaks routinely observed
 – Large, brisk endoleaks undergo further intervention
 • Remolding
 • Iliac extension
 • Placement of aortic cuff
Methods

• Outcomes:
 – Primary Outcome: Presence of type I or III endoleak on initial postoperative CTA

• Secondary Outcomes:
 – Perioperative mortality/complications
 – Late/recurrent type I or III endoleaks
 – Reintervention rate
 – Sac regression at one-year
Results

• Patients
 – 53 patients from 2013 to 2018

• Graft design
 – 146 visceral vessels targeted
 • 103 fenestrations and 43 scallops
 • 100 renal arteries, 46 superior mesenteric arteries
 – 145 / 146 target vessels successfully incorporated
 • One main right renal artery lost secondary to cannulation of an accessory renal artery
Results

• Completion Endoleaks
 – 31 (60 %) type I or III endoleaks after implantation of all devices
 • Further intervention in 12 patients
 • 3 endoleaks resolved completely
 – 28 patients (54 %) with type I or III endoleak on completion angiogram
Results

- **Source of completion endoleak**

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main body and bifurcate or bifurcate and iliac limb</td>
<td>13</td>
<td>46</td>
</tr>
<tr>
<td>Ia or main body and renal</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Bifurcate and iliac limb</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Ib</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1a or main body and renal AND main body AND bifurcate</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Ic (from large unstented renal fenestration)</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Demographics and Comorbidities

<table>
<thead>
<tr>
<th></th>
<th>Completion Endoleak N = 28</th>
<th>No Completion Endoleak N = 24</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>75.4 ± 8.9</td>
<td>75.0 ± 7.5</td>
<td>.57</td>
</tr>
<tr>
<td>Male</td>
<td>68 %</td>
<td>83 %</td>
<td>.20</td>
</tr>
<tr>
<td>White Race</td>
<td>92 %</td>
<td>91 %</td>
<td>.93</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.8 ± 5.3</td>
<td>27.8 ± 5.3</td>
<td>.26</td>
</tr>
<tr>
<td>Hypertension</td>
<td>89 %</td>
<td>79 %</td>
<td>.31</td>
</tr>
<tr>
<td>GFR (mL/min/1.73m²)</td>
<td></td>
<td></td>
<td>.51</td>
</tr>
<tr>
<td>>60</td>
<td>61 %</td>
<td>75 %</td>
<td></td>
</tr>
<tr>
<td>30 – 60</td>
<td>32 %</td>
<td>25 %</td>
<td></td>
</tr>
<tr>
<td>< 30</td>
<td>4 %</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Dialysis-dependent</td>
<td>4 %</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Smoking Status</td>
<td></td>
<td></td>
<td>.09</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>25 %</td>
<td>29 %</td>
<td></td>
</tr>
<tr>
<td>Former Smoker</td>
<td>57 %</td>
<td>71 %</td>
<td></td>
</tr>
</tbody>
</table>
Procedural Characteristics

<table>
<thead>
<tr>
<th>Graft Design</th>
<th>Completion Endoleak N = 28</th>
<th>No Completion Endoleak N = 24</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenestrated Graft Diameter (mm)</td>
<td>30.0 ± 3.4</td>
<td>29.7 ± 3.3</td>
<td>.72</td>
</tr>
<tr>
<td>Number of target vessels</td>
<td>3 [3-3]</td>
<td>3 [3-3]</td>
<td>.54</td>
</tr>
<tr>
<td>Right renal stent diameter (mm)</td>
<td>6.1 ± 0.5</td>
<td>6.3 ± 0.6</td>
<td>.24</td>
</tr>
<tr>
<td>Left renal stent diameter (mm)</td>
<td>6.2 ± 0.5</td>
<td>6.3 ± 0.5</td>
<td>.39</td>
</tr>
<tr>
<td>Degree of oversizing (%)</td>
<td>18 ± 9</td>
<td>18 ± 6</td>
<td>.88</td>
</tr>
<tr>
<td>On Instructions for Use</td>
<td>58 %</td>
<td>70 %</td>
<td>.36</td>
</tr>
</tbody>
</table>
Procedural Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Completion Endoleak (n = 28)</th>
<th>No Completion Endoleak (n = 24)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck length (mm)</td>
<td>9 ± 7</td>
<td>11 ± 8</td>
<td>.34</td>
</tr>
<tr>
<td>Neck diameter (mm)</td>
<td>26 ± 3</td>
<td>25 ± 3</td>
<td>.57</td>
</tr>
<tr>
<td>Alpha angle (degrees)</td>
<td>23 ± 12</td>
<td>19 ± 12</td>
<td>.29</td>
</tr>
<tr>
<td>Beta angle (degrees)</td>
<td>30 ± 14</td>
<td>21 ± 17</td>
<td>.84</td>
</tr>
<tr>
<td>Extensive Neck Calcification</td>
<td>23 %</td>
<td>23 %</td>
<td>.98</td>
</tr>
<tr>
<td>Procedural Anticoagulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ACT (sec)</td>
<td>249 ± 25</td>
<td>248 ± 18</td>
<td>.95</td>
</tr>
<tr>
<td>Final ACT (sec)</td>
<td>258 [229 – 279]</td>
<td>258 [233 – 274]</td>
<td>.73</td>
</tr>
</tbody>
</table>
Results

• Endoleak Resolution
 – 27 of 28 completion endoleaks resolved spontaneously
 • One completion type Ia/III endoleak persisted on the initial postoperative CTA
 • Underwent continued observation
 • Type Ia/III endoleak resolved on the 6-month scan
 – Persistent type II endoleak
 – Sac diameter: 61 mm to 57 mm
Results

• Endoleak Resolution
 – One patient without a completion endoleak had a type Ia endoleak on initial postoperative CTA
 • Graft infolding
 • Treated with placement of a Palmaz stent and endoanchors
Results

• Outcomes
 – Perioperative mortality: 1.9 %
 – Any Perioperative complication: 19 %

• No difference between patients with and without completion endoleaks
Mid-term Results

- Median Follow-up: 269 days
- No late/recurrent type I or III endoleaks
- Reintervention
 - 8 Reinterventions
 - No difference between groups in 1-year freedom-from reintervention
 - Completion endoleak: 91%
 - No completion endoleak: 85%
Mid-term Results

• Sac Status
 – Sac regression at 1-year: no difference
 • Completion endoleak: 47%
 • No completion endoleak: 35%
 – One patient with sac expansion at 3-years secondary to type II endoleak
 • No evidence of type I or III endoleak
 • Underwent transcaval embolization, stabilized
Limitations

• Single-center, high volume experience
• Subjective endoleak evaluation
 – No technique for intraoperative quantification
 – Future research/develop
 – Possible roll for on-table cone-beam CT
• Limited long-term follow-up
Conclusions

• Select completion type I and III endoleaks following FEVAR resolve spontaneously
 – If properly selected, these endoleaks are safe to observe

• Late/recurrent type I and III endoleaks are potentially dangerous
 – Most require prompt treatment
 – These patients require consistent long-term follow-up with routine surveillance