Shockwave Lithoplasty - Indications And Results: Use In Combination With DCBs

Gunnar Tepe MD
RoMed Rosenheim
Disclosure

- I have the following potential conflicts of interest to report:
 - Shockwave Medical study support
The Shockwave Medical Lithoplasty System is intended for lithotripsy-enhanced balloon dilatation of lesions, including calcified lesions, in the peripheral vasculature, including the iliac, femoral, ilio-femoral, popliteal, infra-popliteal, and renal arteries. Not for use in the coronary or cerebral vasculature.
Goal of Lithoplasty

- Obtain a better lumen with PTA
- Avoid stents
- Overcome the main limitation of DCB: severe calcium
DISRUPT BTK assessed Lithoplasty performance in a difficult-to-treat CLI population

<table>
<thead>
<tr>
<th>Vessels</th>
<th>Femoral/Popliteal Arteries</th>
<th>Tibial/Peroneal Arteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutherford 2</td>
<td>33.7% (32)</td>
<td></td>
</tr>
<tr>
<td>Rutherford 3</td>
<td>65.3% (62)</td>
<td>20.0% (4)</td>
</tr>
<tr>
<td>Rutherford 4</td>
<td>1.1% (1)</td>
<td>5.0% (1)</td>
</tr>
<tr>
<td>Rutherford 5</td>
<td></td>
<td>75.0% (15)</td>
</tr>
</tbody>
</table>

Calcification

<table>
<thead>
<tr>
<th></th>
<th>DISRUPT PAD I</th>
<th>DISRUPT BTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>44.2% (42)</td>
<td>52.4% (11)</td>
</tr>
<tr>
<td>Severe</td>
<td>54.7% (52)</td>
<td>47.6% (10)</td>
</tr>
</tbody>
</table>

Angiographic Findings

<table>
<thead>
<tr>
<th></th>
<th>DISRUPT PAD I</th>
<th>DISRUPT BTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVD (mm)</td>
<td>5.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Lesion length</td>
<td>71.9</td>
<td>52.2</td>
</tr>
<tr>
<td>Calcified length</td>
<td>92.5</td>
<td>72.1</td>
</tr>
<tr>
<td>CTO</td>
<td>18.9% (18)</td>
<td>9.5% (2)</td>
</tr>
</tbody>
</table>

DISRUPT PAD & DISRUPT BTK categorized calcified lesions as per PARC definitions. Both studies utilized independent core labs and clinical events committees. DISRUPT BTK data based on European studies.
DISRUPT PAD and BTK Safety & Effectiveness

Lithoplasty has a strong safety and effectiveness profile above- and below-the-knee

<table>
<thead>
<tr>
<th>Safety</th>
<th>DISRUPT PAD I (35 subjects, 3 sites) + DISRUPT PAD II (60 subjects, 8 sites)</th>
<th>DISRUPT BTK (20 subjects, 3 sites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissections</td>
<td>1% (1) Grade D or greater, 1% (1) stent placed</td>
<td>0 Grade D or greater</td>
</tr>
<tr>
<td>Embolization</td>
<td>0 Embolic Events, 8% EPD Usage</td>
<td>0 Embolic Events</td>
</tr>
<tr>
<td>Perforations, abrupt</td>
<td>0 Complications</td>
<td>0 Complications</td>
</tr>
<tr>
<td>closure, slow/no reflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or thrombosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effectiveness

| Residual Stenosis | 23.8% | 26.2% |
| Acute Gain | 2.9mm | 1.5mm |

Follow-Up

| 30 days | 100% Freedom from TLR, 100% Patency | 100% Freedom from TLR, 0% MAE (death, amp. or MI) |
| 6 months | 96.8% Freedom from TLR, 76.7% Patency | - |

DISRUPT PAD & DISRUPT BTK categorized calcified lesions as per PARC definitions. Both studies utilized independent core labs and clinical events committees. DISRUPT BTK data based on European studies.
Severe Calcium Acts as a Barrier to DCB

12 month Results

Primary Patency

LLL

Calcium distribution evaluation by CTA (circumferential) and DSA (longitudinal)

Case 1
Pre Intervention Images
After Treatment with Turbohawk
Hawk Reocclusion treated with Viabahn
New restonosis treated with Lithoplasty
Plus DCB
Lessons Learned

Atherectomy failed after 6 months

Lithoplasty + DCB with sustained benefit after 6 and 12 months in severe calcification
Case 2
Treatment with DCB
Follow up

6 months 12 months 36 months
Lithoplasty
After Lithoplasty and after DCB
Lessons Learned

In DCBs restenosis occurs especially if calcium is present

Lithoplasty + DCB might be useful

Follow-Up 6 and 12 months
Lithoplasty as primary therapy
Results:
• Low rate of vascular complications
 • Provisional stenting (1.1%)
• Consistent effectiveness
 • High acute gain (3.0 mm)
 • Low residuals stenosis (23.8%)
 • Sustained 6 month results

Combination therapy
• Goal is to assess the optimal therapy to dilate heavily calcified lesions.
• All patients who do not receive a stent will be treated with a drug-coated balloon.
Disrupt PAD III Study Design

Study Design: Randomized study of the Shockwave Medical Peripheral Lithoplasty System with DCB versus standard balloon angioplasty with DCB to treat moderate and severely calcified femoropopliteal arteries (Disrupt PAD III).

Objective: The objective is to assess the optimal therapy to dilate heavily calcified lesions with Lithoplasty® versus traditional angioplasty, in achieving less than 30 % stenosis without the need for a stent. In addition, all patients who do not receive a stent will be treated with a drug-coated balloon.
Summary

High acute gains and low residual stenosis determine outcomes and are difficult to achieve in calcified lesions.

Calcified lesions limit effectiveness of drug-coated balloons.

Calcified lesions respond poorly to treatment and require high use of stents.

DISRUPT PAD III is the largest, randomized study in a difficult to treat, calcified patient population.

The goal is to provide level one evidence on the best treatment strategy for calcified lesions in a leave nothing behind strategy.