

The risk of MR-detected carotid plaque hemorrhage on recurrent or first-time stroke: a meta-analysis of individual patient data

Schindler A¹, Bonati LH², Schinner R¹, Altaf N³, Hosseini AA³, Esposito-Bauer L^{2,6}, Singh N⁵, Kwee R⁷, Kurosaki Y⁸, Yamagata S⁸, Yoshida K⁹, Miyamoto S⁹, Maggisano R⁵, Ricke J¹, Moody AR⁵, Kooi ME⁴, Auer DP³, Poppert H ⁶, Saam T¹

- ¹ Department of Radiology, University Hospital, Ludwig-Maximilians-University, Munich, Germany,
- ² Stroke Center, Departments of Neurology and Clinical Research, University of Basel Hospital, Basel, Switzerland
- ³ Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK,
- ⁴ Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
- ⁵ Department of Diagnostic Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada,
- ⁶ Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- 7 Department of Radiology, Zuyderland Medical Center, Heerlen, the Netherlands
- ⁸ Department of Neurosurgery, Kurashiki Central Hospital, Okayama, Japan
- ⁹ Department of Neurosurgery, Graduate school of Medicine, Kyoto University, Kyoto, Japan

DISCLOSURE

Speaker name:

Dr. med. Andreas Schindler

I have the following potential conflicts of interest to report:

- □ Consulting
- Employment in industry
- ☐ Stockholder of a healthcare company
- Owner of a healthcare company
- □ Other(s)
- ✓ I do not have any potential conflict of interest

CLINICAL BACKGROUND

- Carotid intraplaque Hemorrhage (IPH): association with first-time and recurrent cerebrovascular symptoms
- MRI is ideally suited to visualize intraplaque hemorrhage with high correlation to histology¹
- Cohort based meta-analyses^{2,3,4}: ~5–12 fold increased risk for ipsilateral cerebrovascular events (stroke, TIA, amaurosis fugax) in vessels with IPH
 - → Limitations: Heterogeneity, combined study endpoints, lack of individual patient information (e.g. risk factors, degree of stenosis)

Carotid Plaque MRI and Stroke Risk A Systematic Review and Meta-analysis Carotid Plaque Hemorrhage on Magnetic Resonance Imaging Strongly Predicts Recurrent Ischemia and Stroke Meta-Analysis and Systematic Review of the Predictive Value of Carotid Plaque Hemorrhage on Cerebrovascular Events by Magnetic Resonance Imaging

² Gupta A et al., Stroke 2013

³ Hosseini AA, et al., Ann Neurol 2013

⁴ Saam T et al., JACC 2013

¹ Cai JM et al., Circulation 2002

CLINICAL BACKGROUND

- Current consensus¹: use of ischemic stroke as sole outcome event in clinical / therapeutic studies
- Low number of stroke in individual MR-IPH based studies impedes precise risk estimates
- Pooling of individual patient data²
 - → Reasonable case numbers
 - → Adjustment for risk factors and degree of stenosis

¹ Sacco RL et al., Stroke 2013

² Drazen JM, N Engl J Med 2015

STUDY AIM

To estimate the precise risk of MR-detected carotid plaque hemorrhage on recurrent or first-time stroke during follow-up in previously symptomatic and asymptomatic patients in an individual patient based meta-analysis

Inclusion criteria

- Studies containing ≥20 subjects
- Detailed assessment of IPH in the carotid arteries at baseline on a MRI scanner ≥1.5T
- Evaluation of carotid stenosis degree
- Clinical follow-up after carotid MRI

	Symptomatic (n=560)	Asymptomatic with >50% stenosis (n=136)
Age at baseline (years)	72.8 ± 9.7	73.4 ± 8.9
Male	386 (68.9%)	115 (84.6%)
Diabetes mellitus	125 (22.3%)	31 (22.8%)
Hypertension	370 (66.1%)	105 (77.2%)
Any smoking (former or current)	270 (48.2%)	90 (66.2%)
Type of Symptoms at time of inclusion stroke TIA retinal ischemia asymptomatic	285 (50.9%) 201 (35.9%) 74 (13.2%)	- - - 136 (100%)
IPH in the baseline carotid MRI	289 (51.6%)	40 (29.4%)
Stenosis < 50% 50 – 69% 70 – 99%	187 (33.4%) 192 (34.3%) 181 (32.3%)	- 128 (94.1%) 8 (5.9%)
Type of symptoms at event during follow-up stroke TIA retinal ischemia no event	60 (10.7%) 42 (7.5%) 15 (2.7%) 443 (79.1%)	6 (4.4%) 4 (2.9%) 0 (0%) 126 (92.6%)
Time between qualifying event and MRI (days)	24.0 (8.0 – 47.0)	-
Duration of follow-up (months)	12.0 (2.9 – 21.2) Total : 1.121	30.9 (18.9 – 40.5) patient years
Time between inclusion and outcome event (months)	5.2 (1.1 – 17.7)	12.0 (4.8 – 17.5)

KAPLAN-MEIER PLOTS & CUMULATIVE RISK OF FUTURE STROKE EVENT

Asymptomatic individuals (>50% stenosis)

Symptomatic patients (all stenoses)

7.9 (95% CI 1.3 – 47.6)

Hazard Ratio (unadjusted)

10.2 (4.6 – 22.5)

ASSOCIATION OF IPH WITH FUTURE IPSILATERAL STROKE

Frailty model comparing stroke risk depending on baseline characteristics in all symptomatic patients.

	Participants (N)	Hazard Ratio (95% CI)	P-Value
Age < 65 yrs* 65-74 yrs > 74 yrs	105 150 303	1.00 0.88 (0.37 – 2.07) 0.74 (0.33 – 1.66)	0.76 0.46
Sex Male* Female	384 174	1.05 (0.52 – 2.13)	0.89
Diabetes mellitus no* yes	125 189	1.73 (0.95 – 3.17)	0.07
Hypertension no* yes	189 369	1.09 (0.55 – 2.18)	0.8
Degree of stenosis < 50%* 50 - 69% 70 - 99%	186 191 181	1.00 2.00 (0.96 – 4.20) 3.37 (1.46 – 7.79)	0.066
Type of qualifying event Stroke* TIA Retinal ischaemia (incl. Retinal infarction and AmF)	284 200 74	1.00 1.1 (0.62 – 1.95) 0.36 (0.10 – 1.23)	0.75 0.10
IPH at inclusion no* yes	271 287	10.81 (4.72 – 24.76)	< 0.001

^{*} reference category

CONCLUSION

- Presence of IPH increases the risk for future stroke ~8-fold in asymptomatic (>50% carotid stenosis) individuals, and ~10-fold in symptomatic patients among all stenosis categories.
- Among classical risk factors only the degree of stenosis significantly increases stroke risk, however, with clearly lower hazard ratios.
- Study results provide needed risk estimates for the planning of interventional / therapeutic studies.
- IPH-status should be recognized as additional criterion in future risk scores.
 - Improve the selection of patients for the best treatment option

CONTRIBUTING CENTERS & WORK GROUPS

- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany *T Saam, ATR Schindler, R Schinner, J Ricke*
- Stroke Center, Departments of Neurology and Clinical Research, University Hospital Basel, Basel, Switzerland
 LH Bonati
- Radiological Sciences, Division of Clinical Neuroscience and Department of Vascular Surgery, University of Nottingham, Nottingham, UK
 DP Auer, AA Hosseini, N Altaf
- Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands ME Kooi, RM Kwee
- Department of Neurosurgery, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
 Y Kurosaki
- Department of Neurosurgery, Kurashiki Central Hospital, Okayama, Japan
 S Yamagata, K Yoshida
- Department of Diagnostic Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada AR Moody, N Singh
- Department of Neurology, Technische Universität München, Munich, Germany L Esposito-Bauer, H Poppert

THANK YOU