A simple long-term stroke risk model for asymptomatic carotid stenosis – will it help us select patients for intervention in the future?

Alison HALLIDAY, Dylan MORRIS, Richard BULBULIA, Hongchao PAN, Richard PETO, Peter ROTHWELL
University of Oxford

MAC, 09.00 7th December 2017
Age-standardised stroke mortality declining, but total number rising

GBD 2015 Mortality and Causes of Death Collaborators, DALYs and HALE Collaborators (2016), Lancet
Carotid Artery Disease

• Important cause of ischaemic stroke (15-20%)

• Most (80%) carotid strokes have no warning symptoms

• Asymptomatic stenosis: important long-term stroke risk

• RCTs confirm net benefit of CEA among asymptomatic patients

• Successful CEA ~halves long-term stroke risk
Trial Characteristics – CEA vs not

<table>
<thead>
<tr>
<th></th>
<th>VA</th>
<th>ACAS</th>
<th>ACST-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recruitment</td>
<td>1983 -</td>
<td>1987 -</td>
<td>1993 -</td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>1993</td>
<td>2003</td>
</tr>
<tr>
<td>Participants</td>
<td>444</td>
<td>1 662</td>
<td>3 120</td>
</tr>
<tr>
<td>Region</td>
<td>USA</td>
<td>USA</td>
<td>Europe</td>
</tr>
<tr>
<td>Follow-up, Median</td>
<td>5.7 [4.5-7.0]</td>
<td>4.8 [3.7-5.0]</td>
<td>9.0 [6.1-11.1]</td>
</tr>
</tbody>
</table>
VA, ACAS, ACST-1 Trials

2291 Patients on **triple therapy** (ie, including statin) before stroke

A. Any stroke or perioperative death

- CEA + TMT
- TMT alone

B. Any non–perioperative stroke

- CEA + TMT
- TMT alone

Event Risk %, (SE)

2291 Patients on triple therapy (ie, including statin) before stroke
Purpose of this Study

There is uncertainty as to which asymptomatic patients benefit most from carotid intervention

AIM: to develop a simple clinical risk score to identify patients with *high risk* asymptomatic carotid stenosis
Methods

• IPD of ‘medically treatment’ patients from all 3 asymptomatic trials

 • VA

 • ACAS

 • ACST-1

• Restricted to those with no CEA prior to stroke (ie, medically managed)

• Stroke risk ratios (RR) from Cox regression

• Most important factors included in risk score (RR >1.3)
Association of CV Risk Factors with Stroke (among medically managed)

<table>
<thead>
<tr>
<th>Association</th>
<th>Events / Person-years</th>
<th>Stroke RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Diabetes</td>
<td>87/2433 278/10751</td>
<td>1.32 (1.03-1.68)</td>
</tr>
<tr>
<td>Male Sex</td>
<td>260/8631 105/4553</td>
<td>1.23 (0.97-1.55)</td>
</tr>
<tr>
<td>Total Cholesterol (per 2 mmol/L)</td>
<td>* 316/11665</td>
<td>1.16 (0.95-1.40)</td>
</tr>
<tr>
<td>Older Age (per 10 years)</td>
<td>* 365/13184</td>
<td>1.15 (1.00-1.33)</td>
</tr>
<tr>
<td>Systolic Blood Pressure (per 20 mmHg)</td>
<td>* 364/13147</td>
<td>1.09 (0.98-1.21)</td>
</tr>
<tr>
<td>History of Ischaemic Heart Disease</td>
<td>137/4625 228/8559</td>
<td>1.03 (0.83-1.27)</td>
</tr>
</tbody>
</table>

Unpublished, not for reproduction
Association of Cerebrovascular Events with Stroke (among medically managed)

<table>
<thead>
<tr>
<th>Events / Person-years</th>
<th>Stroke RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At Risk</td>
</tr>
<tr>
<td>Brain Infarct on Imaging</td>
<td>93/2435</td>
</tr>
<tr>
<td>Prior Contralateral Event</td>
<td>133/3497</td>
</tr>
<tr>
<td>Prior CEA</td>
<td>91/2821</td>
</tr>
<tr>
<td>Prior Ipsilateral Event</td>
<td>28/1084</td>
</tr>
<tr>
<td>Contralateral Stenosis >80%</td>
<td>51/1624</td>
</tr>
<tr>
<td>Ipsilateral Stenosis >80%</td>
<td>123/4596</td>
</tr>
</tbody>
</table>
3 Important Stroke Risk Factors

<table>
<thead>
<tr>
<th>Event</th>
<th>At Risk</th>
<th>Reference</th>
<th>Stroke RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain Infarct on Imaging</td>
<td>93/2435</td>
<td>158/6301</td>
<td>1.57 (1.21-2.03)</td>
</tr>
<tr>
<td>Prior Contralateral Event</td>
<td>133/3497</td>
<td>232/9687</td>
<td>1.57 (1.26-1.94)</td>
</tr>
<tr>
<td>History of Diabetes</td>
<td>87/2433</td>
<td>278/10751</td>
<td>1.32 (1.03-1.68)</td>
</tr>
</tbody>
</table>

Unpublished, not for reproduction
Summative Risk Score

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes only</td>
<td>1</td>
</tr>
<tr>
<td>Prior cerebral ischaemia* only</td>
<td>2</td>
</tr>
<tr>
<td>Both</td>
<td>3</td>
</tr>
</tbody>
</table>

Prior contralateral symptoms or brain infarct on imaging
Risk Prediction

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Participants</th>
<th>Events / Person-years</th>
<th>Stroke RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (Score 0)</td>
<td>1597</td>
<td>78/4230</td>
<td>1.00 (0.80-1.25)</td>
</tr>
<tr>
<td>Diabetes Only (Score 1)</td>
<td>438</td>
<td>28/929</td>
<td>1.54 (1.06-2.24)</td>
</tr>
<tr>
<td>Prior Cerebral Ischaemia only* (Score 2)</td>
<td>1145</td>
<td>113/2881</td>
<td>2.15 (1.79-2.59)</td>
</tr>
<tr>
<td>Both (Score 3)</td>
<td>328</td>
<td>32/697</td>
<td>2.39 (1.69-3.39)</td>
</tr>
</tbody>
</table>

*Prior contralateral symptoms or brain infarct on imaging

Unpublished, not for reproduction
Risk Prediction

If the 10-year stroke risk is:

- 9% (no risk factors) 10y Absolute gain from CEA ~5%
- 13%* (diabetes) 10y Absolute gain from CEA ~7%
- 20% (prior ischaemia) 10y Absolute gain from CEA ~10%
 (1/3 of trial participants)

*Stroke risk in medically treated ACST-1 participants taking statins
Implications

- **Statins work:** With CEA or without CEA, modern statin
 ~halves stroke risk

- **And CEA works:** With a statin or without a statin, successful CEA ~halves stroke risk

- Risk of stroke ~**double with prior cerebral ischaemia**

- **Those with higher risk scores** should **derive greater absolute benefit** from CEA
Conclusion

Simple characteristics (diabetes, prior ischaemia) can be used to identify high stroke risk patients who might benefit most from CEA.
ACST-2
Surgery vs Stenting

Asymptomatic patients with tight stenosis requiring intervention:

Which procedure is generally better (in addition to good medical treatment)?

- carotid surgery (CEA)
- or
- carotid stenting (CAS)?
ACST-2 progress – High Stroke Risk patients

>2731/3600 now recruited, 869 still needed, by end of 2019

30% diabetic
35% previous symptoms or cerebral infarcts

Follow up to date - 3.5 years
Statin treatment is good
2017 ESVS and ESC Guidelines

ACST-2 Go with the Guidelines!

"10-15% of all strokes follow thromboembolism from an asymptomatic ICA stenosis > 50%"
ESVS Guidelines, 2017

Consider for Intervention

IIa B

Asymptomatic 60-90% stenosis at increased risk of late stroke, provided perioperative risk of stroke/death is <3% and life expectancy > 5 yrs

Patients at higher risk of stroke

- History of contralateral TIA/Stroke
- Silent ipsilateral infarction
- Diabetes
- Specific plaque markers/TCD emboli
- Impaired cerebral reserve

"ACST-2 has been randomising asymptomatic patients to CEA or CAS – it is hoped that all surgeons and interventionalists will support these RCTs"
ESVS Guidelines, 2017

Medical Treatment for all

- Longterm single APT (usually aspirin)
- Clopidogrel if aspirin intolerant
- Statin therapy
- BP lowering treatment to maintain BP < 140/90
- APT periprocedure and longterm
- Continue statins
- Caution in reducing BP, but avoid uncontrolled hypertension > 180/90 mmHg

CEA & CAS

- Consider EPDs
- DAPT (aspirin/clopidogrel) for at least 1 month after

CAS only

- I B

Post procedure

- Independent assessment is recommended

ESC/ESVS

Algorithm for Treatment of Asymptomatic Carotid Stenosis

60-99% stenosis
No recent TIA/stroke
Symptoms ipsilaterally

- Life expectancy >5 yrs?
- Favourable anatomy?
- Higher stroke risk on BMT?

Yes
Yes
No

Within ACST-2

Consider CEA + BMT
Consider CAS + BMT

BMT I A
ACST-2: Long-term statin use >80%
ACST-2: >75% on good (or very good) statin regimens

- Simva 40
- Atorva 20
- Rosuva 10
- Combined
Acknowledgements

ACST, ACAS, VA Trialists and to the participants who took part

ACST-2 information website acst-2.org