Perspectives of Magnetic Resonance Imaging (MRI) for aortic aneurysms and dissections

Dr. med. Jonathan Nadjiri
Institut of diagnostic and interventional Radiology
Direktor of the Institut: Univ.-Prof. Dr. Ernst J. Rummeny
Technical University of Munich

Research Group of Cardiovascular Imaging
Dr. med. Jonathan Nadjiri, Dr. med. Alexandra Sträter, PD Dr. med. Daniela Münzel, Dr. med. Michael Rasper
No disclosures
Agenda:

✓ Current role of MRI in aortic disease

✓ Examples of applications

✓ Possibilities & perspective
Current role of MRI in aortic disease:

- …mainly in CT:
 - Fast
 - Few contraindications

Eligible for intensive care patients

- Requires only little cooperation from patient.
What is the current role of MRI in aortic disease now?

- ...mainly in CT:
 - Fast
 - Few contraindications
 - Available
 - Established
 - Technically easy
 - Requires only little cooperation from patient.

MRA
What is the current role of MRI in aortic disease now?

Main arguments for MRI:

- More young patients with more follow up-exams.
- Native examinations in MR allow for vascular imaging.
 - First evaluation of diameters of the aorta.
 - Follow up-exams.
- More information
 - Function (flow measurement)
 - Function (wall movement)
 - Perfusion imaging

Evaluation of prognosis
Application: Rule out Endoleak - Angiography and perfusion

MRA | CTA with Gd | MRA | Perfusion

Additional information

Perspectives of Magnetic Resonance Imaging (MRI) for aortic aneurysms and dissections
Jonathan Nadjiri, M.D. | Technical University Munich | Munich | 08.12.2017
Application: Rule out Endoleak - data overview

Table 4. Magnetic Resonance Imaging vs Computed Tomography Angiography for Additional Detection of Endoleaks.

<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>MRI+ CTA−</th>
<th>MRI− CTA+</th>
<th>MRI+ CTA−</th>
<th>MRI− CTA+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantisani (2011)</td>
<td>3</td>
<td>0</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>Cejna (2002)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Haulon (2001)</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ichihashi (2013)</td>
<td>3</td>
<td>1</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>van der Laan (2006)</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wieners (2009)</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: CTA, computed tomography; MRI, magnetic resonance imaging; NI, not included.

Magnetic Resonance Imaging vs Computed Tomography Angiography for the Detection of Aortic Aneurysm Repair

A Systematic Review of Ultrasound or Magnetic Resonance Imaging Compared With Computed Tomography for Endoleak Detection and Aneurysm Diameter Measurement After Endovascular Aneurysm Repair
Application: Morphologic imaging without use of contrast agent

SSFP-Sequences
Application: Morphologic imaging without use of contrast agent

SSFP-Sequences

SSFP-Sequences (Trufi 3D)
Application: Magnetic Resonance Angiography
Table 2. Reported Sensitivity and Specificity of Diagnostic Tools for Acute Aortic Syndrome

<table>
<thead>
<tr>
<th>Diagnostic Tool</th>
<th>Studies, No.</th>
<th>Patients, No.</th>
<th>Threshold</th>
<th>All AAS(^a,,,b)</th>
<th>Acute Aortic Dissection(^a,,,b)</th>
<th>Intramural Hematoma(^a,,,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sensitivity</td>
<td>Specificity</td>
<td>Specificity</td>
</tr>
<tr>
<td>CT27</td>
<td>1</td>
<td>49</td>
<td></td>
<td>100 (86.3-100)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MRI(^{29-31})</td>
<td>3</td>
<td>116</td>
<td></td>
<td>95.0-100</td>
<td>94.0-98.0</td>
<td>95.0-100</td>
</tr>
<tr>
<td>TEE(^{17,27,29,30,32,33})</td>
<td>6</td>
<td>520</td>
<td></td>
<td>86.0-100</td>
<td>90.0-100</td>
<td>86.0-100</td>
</tr>
<tr>
<td>TTE(^{34,35})</td>
<td>2</td>
<td>228</td>
<td></td>
<td>73.7-100</td>
<td>71.2-91.0</td>
<td>73.7-100</td>
</tr>
<tr>
<td>Intravascular ultrasound(^{36})</td>
<td>1</td>
<td>28</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>D-dimer(^{37-42})</td>
<td>6</td>
<td>876</td>
<td>>0.5-0.7 (\mu)g/mL</td>
<td>51.7-100</td>
<td>32.8-89.2</td>
<td>51.7-100</td>
</tr>
<tr>
<td>Elastin degradation products(^{43})</td>
<td>1</td>
<td>609</td>
<td>>3 SD above mean of healthy patients</td>
<td>99.8 (99.1-100)</td>
<td>99.8 (99.1-100)</td>
<td></td>
</tr>
<tr>
<td>MMP 8/9(^{44})</td>
<td>1</td>
<td>126</td>
<td>>3.6 ng/mL</td>
<td>100 (93.2-100)</td>
<td>9.5 (3.9-18.5)</td>
<td></td>
</tr>
<tr>
<td>Smooth muscle myosin heavy chain(^{45})</td>
<td>1</td>
<td>27</td>
<td>>10 ng/mL</td>
<td>90.0 (78.7-100)</td>
<td>97.0</td>
<td>90.0 (78.7-100)</td>
</tr>
<tr>
<td>Soluble lectin-like oxidized LDLR 1(^{46})</td>
<td>1</td>
<td>19</td>
<td>>150 pg/mL</td>
<td>89.5</td>
<td>94.3</td>
<td></td>
</tr>
</tbody>
</table>
Perspective: New prognostic parameter

FlowDisplacement = \frac{\text{Systolic Flow Displacement}}{\text{AoDiameter}}

Systolic Flow Displacement Correlates With Future Ascending Aortic Growth in Patients With Bicuspid Aortic Valves Undergoing Magnetic Resonance Surveillance

Nicholas S. Burris, MD,*, Monica Sigovan, PhD,‡ Heather A. Knauer, MSPH,‡ Elaine E. Tseng, MD,§ David Saloner, PhD,*, and Michael D. Hope, MD*
Perspective: New prognostic parameter
Perspective: New prognostic parameter

Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy
Journal of the American College of Cardiology Aug 2015, 66 (8) 892-900; DOI: 10.1016/j.jacc.2015.06.1310
Summary:

➢ Diagnostic potential of MR exhibits that of the CT in many vascular applications

➢ Many opportunities: E.g. prognostic data or diagnostic

➢ Eligible for frequent follow-up examinations; in some cases without contrast agent

➢ Complicated and time consuming examination
Thank you very much for your attention!